Tag Archives: double decoction

Mahrs aU Clone, Iteration 1

As I’ve announced a month ago, my homebrewing project for 2020 is to develop a clone recipe for Mahrs aU. I brewed the first iteration on December 27, and here’s a quick report on how that went:

My grist was fairly simple, 2.4 kg Pilsner malt and 2.4 kg Munich I malt, both from Weyermann. I doughed in with 20 litres of water which I had treated with 6 ml of lactic acid (something something counteract local water’s hardness, I calculated this ages ago and stuck to it since, I’m terrible with water chemistry). I then conducted my preferred double decoction mash where I start with a very large thick decoction, rest it at around 70°C when heating up, then boil it and mix it back, and then pull a thin decoction, boil it, and mix it back again. The temperature steps the main mash was undergoing in this case were 39°C (dough-in temperature), 62°C and 72°C. I then moved the mash to the lauter tun, recirculated to get clear wort and then started lautering, measuring 17.6 Brix on the first runnings. I continuously sparge, and after 30 minutes, I had enough wort collected to bring it to a boil. Pre-boil gravity as determined by refractometer was 11 Brix.

After 90 minute boil, with hop additions (2019 harvest Perle, 7.2% alpha acid) at 90 minutes (32g) and 10 minutes (10g) before the end of the boil, I moved the wort the a fermenter and chilled it down to 10°C before adding two rehydrated sachets of W-34/70 yeast. Fermentation took off about 36 hours after pitching the yeast.

Things didn’t go quite as planned, as the wort’s OG turned out to be 13.3°P. My grist calculation was based on previous batches in which I employed the same mashing regime, but this time, for whatever reason, efficiency was quite a bit better than what I wanted to achieve. I’m not going to complain about it, as it’s only 0.6°P (roughly 0.002 in gravity points) higher than where I wanted to get to.

Fermentation was quite a bit slower than usual. I’m not sure why, but I may have rehydrated the dry yeast improperly, therefore slightly underpitching. Even after four weeks, fermentation did not seem quite finished. I would have waited, but two days ago, another problem came up: the seal on the fermenter’s tap was leaking. Not a whole lot, but in the tray underneath, a few hundred ml of beer had built up. Since this was just the first iteration, and things weren’t 100% right from the beginning, I decided for an emergency plan: instead of lagering properly, I just cold-crashed the beer, hoping not more would leak between Friday and today, and then bottled the beer today. With 4.4°P, I’m not 100% sure the beer had completely finished fermenting (though there wasn’t really much of a noticeable residual sweetness), but I bottled it anyway and just let it naturally carbonate over the next few weeks. To be frank, I’m not particularly happy with that, but given that things weren’t right from the beginning, it’s still an acceptable shortcut for a first iteration.

A quick taste test directly from the fermenter revealed that the beer indeed tasted remarkably close to the original Mahrs aU. While the beer was pretty clean-tasting, the hop bitterness still seemed a bit rough. My concern is that whenever this has aged a bit and smoothed out, the bitterness might not be quite high enough. Bear in mind that I based the hop additions and overall bitterness just on some very flimsy circumstantial evidence. Since then, I’ve received multiple pointers to other sources talking about the Mahrs aU parameters, such as this very helpful comment by DB who mentioned that Michael Jackson had written about aU in 1999, when it was still bittered with Northern Brewer and Hallertauer Tradition to 36 IBU, and this reply on Twitter pointing out that Ron Pattinson’s book Decoction! (seriously, you should buy it) contains OG, ABV, real extract, apparent attenuation, colour and bitterness from the year 2000 for “Mahr’s Bräu ungespundet – hefetrüb” (aka Mahrs aU), setting the bitterness at a whopping 42.5 EBU.

I’m still waiting for the bottled beer to condition and slightly mature before I’ll start a proper taste test the results of which will then be the basis for my next step. Based on the brew day itself, I will probably slightly reduce the amount of malt the next time so that I can get closer to 12.7°P in OG than the 13.3°P of the first iteration. Also depending on how the bitterness shines through, I may slightly increase the bittering hops.

I also chucked out that particular fermenter and ordered myself a 30 litre Speidel fermenter instead.

Why a Triple Decoction Mash Can Never Fail

I’m currently working on a new project, so as part of that, I’ve been reading quite a few historic descriptions of decoction mashing, in particular triple decoction which historic literature generally describes as the standard mash schedule in Bavaria, Bohemia and Austria around the 1870’s-1880’s.

When I played a bit with calculating the right mash volumes and the mash temperatures, I stumbled upon an interesting property of standard triple decoction: you can’t get it wrong. You actually have to actively try and sabotage it for it to fail.

This is a really cool thing because triple decoction sounds so ancient and complicated and easy to do wrong, and I think that scares a lot of people who then shy away from trying it out, but if you follow a few simple principles, you can’t go wrong at all.

These principles are:

  • always pull 1/3 of your total mash volume as decoction
  • pull the first and second decoction thick (i.e. mostly malt with little liquid), and the third decoction thin (i.e. mostly liquid)
  • bring each decoction to a boil, boil for a bit, then mix back into main mash
  • make sure you measure your volumes exactly, work quickly when mixing back, but also mix thoroughly
  • when doughing in, give the enzymes some time to get dissolved before starting to pull your first decoction

From a historic point of view, triple decoction was a reliable method to guide your mash through a number of particular ranges of rest temperatures to facilitate the activity of specific enzymes to convert long proteins into shorter protein chains and to convert starch into simple sugar molecules and shorter dextrin chains to both achieve a fermentable wort and a good mouthfeel, without requiring a thermometer.

And when you apply some maths, and draw a pretty graph, it really shows that all you need is the ability to vaguely judge your initial mash temperature to be between somewhere slightly above room temperature and slightly below tepid, and everything falls right into place, provided you follow the principles above.

The general equation to calculate your decoction volume is:

decoction volume = total mash volume * (target temperature – start temperature ) / ( boil temperature – start temperature)

If we assume the total mash volume to be 1, and our decoction volume to be 1/3, we can rewrite this to

target temperature = start temperature + 1/3 * (boil temperature – start temperature )

Based on this, we can easily calculate whole temperature series if all we do is repeatedly pull decoctions that are 1/3 of the whole mash volume, bring them to a boil, and mix them back.

I’ve done this in a spreadsheet, and put this into a nice temperature/time chart to indicate the time schedule your mash steps would follow. In total, I’ve done this with four different initial temperatures: 20, 25, 30 and 35 °C. This is a rather wide temperature range, but it’s also one where most people could easily and correctly judge whether a liquid is within that temperature range just by feeling with their finger or elbow. To keep the chart readable, I’ve only added the main mash temperature, and left out the temperature curves of the decoctions. To account for cooling during mixing back, especially so on a homebrew scale, I assumed a boiling temperature of 95 °C instead of 100 °C.

Triple Decoction Mash Temperatures

In addition, I’ve marked the temperature ranges in which you reasonably want to keep your mash to do a protein rest, as well as to give the alpha and beta amylases good conditions to do their work.

When you now look at the chart, it is very noticeable that at all stages (protein rest, maltose rest, saccharification rest/mash-out), all our target temperatures fall within the desired temperature ranges. The further we go, the more all the temperature curves converge towards a narrower and narrower temperature range, even though we started with a very wide one. This makes it very hard to screw up, even if you e.g. slightly miss your target temperature after your first decoction: you will still be well within the desired temperature range.

In addition to that, when you bring up your decoctions, in particular the first one, to a boil, they go through these temperature ranges as well. Some modern mash schedules recommend doing at least a saccharification rest to optimally use the enzymes that will later get destroyed, so you can have an infusion step mash within your decoction. Even if you don’t do it, unless you heat up very quickly, your decoction will at least partially convert when you heat it up.

And this is why your triple decoction mash can never fail: when bringing your decoctions to a boil, they will partially, if not mostly, convert, and then release more starch during the boil, which will then be fully converted in the main mash. There are two decoctions where the enzymes get into the right temperature range to convert starch into sugar, and there are two rest steps where the enzymes have even more time to convert more starch into sugar. Your whole mash goes through the right temperature so many times, it will eventually be fully converted. And to get into these right temperature ranges, all you need to do is follow a few simple principles. And if you want, you could even do this totally without a thermometer.

For most modern malts, triple decoction is possibly a bit to harsh, in particular when it comes to the extended protein rest which could potentially be very damaging to foam stability. For this, you can also employ an enhanced double decoction, in which you start at the same temperature as a triple decoction, but pull double the volume for the first decoction, and do a step mash of your first decoction before boiling it. That way you keep the intense treatment of your malt, but can keep the time within the protein rest range to an absolute minimum.